Файл:Synthesizing the preferred inputs for neurons in neural networks via deep generator networks Nguyen2016synthesizing.pdf

Материал из Материалы по машинному обучению
Перейти к: навигация, поиск
Synthesizing_the_preferred_inputs_for_neurons_in_neural_networks_via_deep_generator_networks_Nguyen2016synthesizing.pdf(0 × 0 пикселей, размер файла: 9,32 МБ, MIME-тип: application/pdf)

AnhNguyen anguyen8@uwyo.edu AlexeyDosovitskiy dosovits@cs.uni-freiburg.de JasonYosinski jason@geometricintelligence.com ThomasBrox brox@cs.uni-freiburg.de JeffClune jeffclune@uwyo.edu

Abstract

Deep neural networks (DNNs) have demonstrated state-of-the-art results on many pattern recognition tasks, especially vision classification problems. Understanding the inner workings of such computational brains is both fascinating basic science that is interesting in its own right—similar to why we study the human brain—and will enable researchers to further improve DNNs. One path to understanding how a neural network functions internally is to study what each of its neurons has learned to detect. One such method is called activation maximization (AM), which synthesizes an input (e.g. an image) that highly activates a neuron. Here we dramatically improve the qualitative state of the art of activation maximization by harnessing a powerful, learned prior: a deep generator network (DGN). The algorithm (1) generates qualitatively state-of-the-art synthetic images that look almost real, (2) reveals the features learned by each neuron in an interpretable way, (3) generalizes well to new datasets and somewhat well to different network architectures without requiring the prior to be relearned, and (4) can be considered as a high-quality generative method (in this case, by generating novel, creative, interesting, recognizable images).

История файла

Нажмите на дату/время, чтобы просмотреть, как тогда выглядел файл.

Дата/времяРазмерыУчастникПримечание
текущий15:29, 22 декабря 20160 × 0 (9,32 МБ)Slikos (обсуждение | вклад)
  • Вы не можете перезаписать этот файл.

Следующая 1 страница ссылается на данный файл: