Файл:Evolving Neural Networks through Augmenting Topologies Stanley.ec02.pdf

Материал из Материалы по машинному обучению
Перейти к: навигация, поиск
Evolving_Neural_Networks_through_Augmenting_Topologies_Stanley.ec02.pdf(0 × 0 пикселей, размер файла: 445 КБ, MIME-тип: application/pdf)

Kenneth O. Stanley kstanley@cs.utexas.edu Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712, USA

Risto Miikkulainen risto@cs.utexas.edu Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712, USA

Abstract

An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task. We claim that the increased efficiency is due to (1) employing a principled method of crossover of different topologies, (2) protecting structural innovation using speciation, and (3) incrementally growing from minimal structure. We test this claim through a series of ablation studies that demonstrate that each component is necessary to the system as a whole and to each other. What results is significantly faster learning. NEAT is also an important contribution to GAs because it shows how it is possible for evolution to both optimize and complexify solutions simultaneously, offering the possibility of evolving increasingly complex solutions over generations, and strengthening the analogy with biological evolution.

Keywords: Genetic algorithms, neural networks, neuroevolution, network topologies, speciation, competing conventions.

История файла

Нажмите на дату/время, чтобы просмотреть, как тогда выглядел файл.

Дата/времяРазмерыУчастникПримечание
текущий12:20, 28 декабря 20160 × 0 (445 КБ)Slikos (обсуждение | вклад)
  • Вы не можете перезаписать этот файл.

Следующая 1 страница ссылается на данный файл: