Файл:Enriching Speech Recognition with Automatic Detection of Sentence Boundaries and Disfluencies.pdf

Материал из Материалы по машинному обучению
Перейти к: навигация, поиск
Enriching_Speech_Recognition_with_Automatic_Detection_of_Sentence_Boundaries_and_Disfluencies.pdf(0 × 0 пикселей, размер файла: 237 КБ, MIME-тип: application/pdf)

Yang Liu, Member, IEEE, Elizabeth Shriberg, Andreas Stolcke, Senior Member, IEEE, Dustin Hillard, Student Member, IEEE, Mari Ostendorf, Fellow, IEEE, Mary Harper, Senior Member, IEEE

Abstract

Effective human and automatic processing of speech requires recovery of more than just the words. It also involves recovering phenomena such as sentence boundaries, filler words, and disfluencies, referred to as structural metadata. We describe a metadata detection system that combines information from different types of textual knowledge sources with information from a prosodic classifier. We investigate maximum entropy and conditional random field models, as well as the predominant HMM approach, and find that discriminative models generally outperform generative models. We report system performance on both broadcast news and conversational telephone speech tasks, illustrating significant performance differences across tasks and as a function of recognizer performance. The results represent the state of the art, as assessed in the NIST RT-04F evaluation.

Index Terms Rich transcription, metadata extraction, prosody, maximum entropy, conditional random field, sentence boundary, disfluency, punctuation, confusion network

История файла

Нажмите на дату/время, чтобы просмотреть, как тогда выглядел файл.

Дата/времяРазмерыУчастникПримечание
текущий17:11, 22 декабря 20160 × 0 (237 КБ)Slikos (обсуждение | вклад)
  • Вы не можете перезаписать этот файл.

Следующая 1 страница ссылается на данный файл: