Файл:A Method for Large-Scale L1-Regularized Logistic Regression L1 logistic reg aaai.pdf
Kwangmoo Koh and Seung-Jean Kim and Stephen Boyd Electrical Engineering Department Stanford University Stanford, CA 94305
Abstract
Logistic regression with ℓ1 regularization has been proposed as a promising method for feature selection in classification problems. Several specialized solution methods have been proposed for ℓ1-regularized logistic regression problems (LRPs). However, existing methods do not scale well to large problems that arise in many practical settings. In this paper we describe an efficient interior-point method for solving ℓ1-regularized LRPs. Small problems with up to a thousand or so features and examples can be solved in seconds on a PC. A variation on the basic method, that uses a preconditioned conjugate gradient method to compute the search step, can solve large sparse problems, with a million features and examples (e.g., the 20 Newsgroups data set), in a few tens of minutes, on a PC. Numerical experiments show that our method outperforms standard methods for solving convex optimization problems as well as other methods specifically designed for ℓ1regularized LRPs.
История файла
Нажмите на дату/время, чтобы просмотреть, как тогда выглядел файл.
Дата/время | Размеры | Участник | Примечание | |
---|---|---|---|---|
текущий | 15:22, 22 декабря 2016 | 0 × 0 (129 КБ) | Slikos (обсуждение | вклад) |
- Вы не можете перезаписать этот файл.
Использование файла
Следующая 1 страница ссылается на данный файл: